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La Jetée-Technopôle de Château-Gombert, 38, rue F. Joliot Curie, 13451 Marseille Cedex 20, France

SUMMARY

An improved projection scheme is proposed and applied to pseudospectral collocation-Chebyshev
approximation for the incompressible Navier–Stokes equations. It consists of introducing a correct
predictor for the pressure, one which is consistent with a divergence-free velocity field at each time step.
The main objective is to allow a time variation of the pressure gradient at boundaries. From different test
problems, it is shown that this method, associated with a multistep second-order time scheme, provides
a time accuracy of the same order as the temporal scheme used for the pressure, and also improves the
prediction of the velocity slip. Moreover, it does not exhibit any numerical boundary layer mentioned as
a drawback of fractional steps algorithm, and does not require the use of staggered grids for the velocity
and the pressure. Its effectiveness is validated by comparison with a previous time-splitting algorithm
proposed by Goda (K. Goda, J. Comput. Phys., 30, 76–95 (1979)) and implemented by Gresho (P.
Gresho, Int. j. numer. methods fluids, 11, 587–620 (1990)) to finite element approximations. Steady and
unsteady solutions for the regularized driven cavity and the rotating cavity submitted to throughflow are
also used to assess the efficiency of this algorithm. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The objective of this study is to develop an efficient numerical method, which possesses a good
temporal behavior for sufficiently large time integration in view of simulations of three-dimen-
sional unsteady flows. For this purpose, a high-order splitting algorithm is developed with a
second-order multistep time scheme in the framework of pseudospectral collocation Chebyshev
approximations. As well as their high precision, the motivation for the use of spectral methods
stems from their very low phase errors for the prediction of time-dependent flow regimes [1,2].
The present article is concerned with the assessment of the effectiveness of the method,
particularly its temporal behavior, by validation with analytical solutions and available
solutions for the regularized driven cavity and for rotating cavities submitted to superimposed
radial throughflow.
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Modélisation Numérique, La Jetée-Technopôle de Château-Gombert, 38, rue F. Joliot Curie, 13451 Marseille Cedex
20, France. Tel.: +33 491118528; Fax.: +33 491118502; E-mail: randria@mfmbozy.univ-mrs.fr

CCC 0271–2091/98/130501–21$17.50
© 1998 John Wiley & Sons, Ltd.

Recei6ed 26 February 1997
Re6ised 25 September 1997



S. HUGUES AND A. RANDRIAMAMPIANINA502

One major problem in solving incompressible Navier–Stokes equations comes from the
coupling of the pressure with the velocity, to satisfy the incompressibility constraint. Different
techniques were proposed in the literature to overcome this difficulty (e.g. Reference [3]). The
use of vorticity and streamfunction formulation of the equations avoids this problem.
However, although its application to two-dimensional flows is common, its extension to
three-dimensional situations, which is our final goal, is not straightforward, particularly in
multiply connected domains (see References [4,5]). In view of solving the lack of evolution
equation for the pressure in primitive variables formulation, which is known to be the source
of difficulty, Chorin [6] introduced a false explicit time derivative for the pressure, in the
artificial compressibility methods (similarly to penalty methods). A version for unsteady flows
is presented by Peyret and Taylor [7]. However, this method is basically iterative. Two types
of approaches have been proposed independently: first, the coupled method, mainly as the
influence matrix technique [8] and the Uzawa scheme, and second, the time-splitting method
[9,10]. The main drawback of influence matrix techniques comes from the large memory
required, which becomes difficult to manage for three-dimensional unsteady flows. On the
other hand, in most cases the Uzawa scheme necessitates iterative process for unsteady flows.

Thus, splitting methods or fractional steps have gained a new interest because of their
non-iterative nature. Moreover, they do not require any specific memory storage, and are well
adapted for the simulation of unsteady flows. They belong to the predictor-corrector al-
gorithms, where the pressure serves to project a predicted velocity field into a divergence-free
space. Several variants are now available from the initial techniques proposed by Chorin [9]
and Temam [10]. Two main classes can be identified: the first with an explicit treatment of the
velocity predicted from the convection terms, followed by an implicit resolution of the
corrected velocity from the diffusion terms. The second class consists of implicitly solving the
predicted solution from the momentum equations, followed by an explicit correction step for
the velocity. The present algorithm belongs to the latter. Issa [11] linearized the convection
terms and included its diagonal part with diffusion terms to implicitly solve the prediction step
and explicitly the successive correction steps (up to three). Kim and Moin [12] proposed a
semi-implicit treatment of both steps, using a Crank–Nicolson time scheme on the diffusion
terms.

However, the main problem concerns the treatment of the pressure, and the associated
boundary conditions. Gresho and Sani [13] gave a comprehensive study of the treatment of the
pressure boundary conditions necessary to enforce the incompressibility constraint. They
showed that only Neumann boundary conditions are appropriate, i.e. they provide a unique
solution. Recently, Timmermans et al. [14] proposed an approximate projection method, in
which Dirichlet boundary conditions are derived for the pressure from the prediction step. On
the other hand, Ku et al. [15] developed a method which avoids the need to specify boundary
conditions for the intermediate predicted velocity field and the pressure, by introducing an
algebraic system of equations from the values of the pressure at collocation points and
applying the continuity equation at boundaries. Goda [16] proposed an algorithm which differs
from these by introducing an intermediate variable proportional to the difference between two
successive pressure fields in time, instead of directly solving the pressure itself. Moreover, the
pressure gradient obtained at the previous time level is taken into account during the
resolution of the predicted velocity (see also Reference [17]). Van Kan [18] has shown that such
projection schemes allow the order of accuracy of the temporal scheme used to be kept for the
pressure and the velocity. He was the first to report successful application of this algorithm to
the prediction of unsteady flows in cavities with source-sink flows, using the finite difference
approach associated with a Crank–Nicolson scheme.
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Although the use of projection methods is popular with finite difference and volume or finite
element approximations, there are only a few applications reported for spectral methods.
Orszag and Kells [19] used a tau-Chebyshev–Fourier approximation (with two periodic
directions) associated with second-order Crank–Nicolson/Adams–Bashforth schemes for the
direct numerical simulation of transition to turbulence in plane Poiseuille and plane Couette
flows. Their fractional steps correspond to an explicit evaluation of the predicted velocity and
a fully implicit treatment of the correction step. However, Orszag et al. [20] mentioned the
existence of a numerical divergence boundary layer of thickness O(nDt)1/2, related to time
differencing errors or splitting errors. This is determined directly by the form of the boundary
condition to be used for the Poisson equation for the pressure. In a comprehensive theoretical
study, these authors have proposed different techniques to circumvent the spurious effects of
the splitting errors for the development of high-order methods. Karniadakis et al. [21]
considered an improved version of the method used by Orszag and Kells [19] and applied it to
spectral element methods. Following the theoretical studies of Orszag et al. [20], they proposed
a higher pressure boundary condition in conjunction with stiffly stable schemes to prevent
propagation and accumulation of time differencing errors. The key point of their study resides
in the treatment of the Neumann condition used for the Poisson equation. They separated the
involved Laplacian of the velocity in the solenoidal part, approximated by an explicit scheme,
and in the irrotational part approximated by an implicit scheme. With a spectral tau-Cheby-
shev approximation, Shen [22] implemented the time-splitting algorithm proposed by Kim and
Moin [12] for finite difference methods associated with second-order Crank–Nicolson/
Adams–Bashforth schemes. He applied this code to the prediction of the Hopf bifurcation of
the unsteady regularized driven cavity flow. However, the pressure is obtained in these cases
with an order of accuracy lower than the temporal scheme used. Botella [23] has recently
developed a new variant from the former splitting methods of Chorin and Temam, known to
be of O(Dt1/2). He has introduced a temporal scheme of order three, to improve the accuracy
of the algorithm and applied it to pseudospectral methods, using different spaces approxima-
tion for the velocity and the pressure. Instead of solving a Poisson equation for the pressure,
a Darcy problem was used during the projection step, where the pressure is obtained via a
‘pseudo-Laplacian’ which does not require boundary conditions. The pressure and velocity are
obtained with the same order of accuracy as the temporal scheme. On the other hand, Batoul
et al. [24] have developed a direct solver based on an algorithm named ‘projection-diffusion’,
in which the uncoupling of the velocity and pressure does not necessitate any annex time
scheme, as in time-splitting scheme.

In the present paper, an improved time-splitting algorithm, based on the one proposed by
Goda [16] and implemented by Gresho [17] to finite element approximations (his ‘Projection
2’), is developed for application to pseudospectral Chebyshev methods. The main goal is to
solve the main drawback of this former scheme, related to a fixed pressure gradient at
boundaries, held at its initial value, during time integration. Indeed, this gradient can vary in
actual situations, especially for time-dependent flows and in the presence of forced flows. This
is done by introducing a correct predictor for the pressure, derived directly from the
Navier–Stokes equations, which provides an appropriate consistent pressure field with a
divergence-free velocity. It is also shown that this algorithm allows the order of accuracy of the
temporal scheme used to be kept for the pressure and the velocity. The assessment of its
efficiency is made by solving the unsteady Navier–Stokes equations in three specific test cases:
analytical solutions, the regularized driven cavity and the rotating cavity subject to through-
flow. Computed results are compared with available numerical, theoretical and experimental
data in the literature for the last two cases.
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After the formulation of the problem in Section 2, the solution method is outlined in Section
3, including the spatial approximation with the temporal scheme and emphasis on the
projection scheme. Section 4 is devoted to the results obtained for the three specific test cases
considered. Section 5 gives the conclusion.

2. FORMULATION

Governing equations and numerical methods are presented for two-dimensional situations.
Their extension to axisymmetric configurations (for the rotating cavities considered in the
paper) is straightforward.

Consider Newtonian incompressible flows, governed by the Navier–Stokes equations:

(V
(t

+V ·9V= −9p+
1

Re
DV+F in V,

put in the following form:

(V
(t

+N(V)= −9p+
1

Re
L(V)+F in V, (1)

9 ·V=0 in V, (2)

where V is the velocity vector, p is the static pressure, F a body force, and Re the Reynolds
number characteristic of the flow. Specific initial and boundary conditions W are given for the
velocity field, such that:

V=W on (V, and V0=W0, at t=0, in V,

with

9 ·W0=0 in V.

A Poisson equation for the pressure is derived from Equations (1) and (2):

Dp= −9 · [N(V)−F] in V. (3)

A consistent boundary condition is required to solve this elliptic equation (3), because no
natural condition exists. A straight consistent Neumann condition (see Reference [13]) can be
derived from Equations (1) and (2):

(p
(n

=n ·
�

−
(V
(t

−N(V)+
1

Re
L(V)+F

n
on (V. (4)

In this condition, Karniadakis et al. [21] have separated the diffusion term L(V) in
solenoidal part, approximated by an explicit scheme, and in irrotational part approximated by
an implicit scheme:

L(V)=9(9 ·V)−9× (9×V).

They have mentioned that the time accuracy of the global solution is directly dependent on
the treatment of these pressure boundary conditions. They have tested different time schemes
up to order three, and shown that the time differencing error for the velocity field is one order
of magnitude smaller than the corresponding error in the boundary divergence, i.e. the order
time treatment of the pressure boundary conditions.
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3. SOLUTION METHOD

3.1. Spatial approximation

A pseudospectral collocation-Chebyshev method is implemented. Each dependent variable is
expanded in the approximation space PNM, composed of Chebyshev polynomials, Tn and Tm

of degrees less or equal than N and M respectively, in the x- and y-directions. Thus, for
f= (u, 6, p):

fNM(x, y, t)= %
N

n=0

%
M

m=0

f. nm(t)Tn(x)Tm(y). (5)

The collocation method consists of exactly satisfying the differential equations at special
points, the so-called collocation points [1,2]. The Chebyshev–Gauss–Lobatto collocation
points are considered, corresponding to the extrema of the Chebyshev polynomials of highest
degrees, say N and M : xi=cos(ip/N) and yj=cos( jp/M) for i� [0, N ] and j� [0, M ]. This
distribution gives concentrated grid points towards the boundaries, with the distance between
the last collocation point and the boundary of O(N−2) for a degree N. Thus, the system of
equations to be treated is solved directly in the physical space on these collocation points for
each variable fNM(ri, zj, t) for i� [1, N−1] and j� [1, M−1], with associated boundary condi-
tions. But differentiation is accomplished efficiently by means of a transform method, and by
using a recurrence relation in spectral space [1,2].

The velocity and the pressure are solved on the same grid PNM×PNM.

3.2. Temporal scheme

The time integration used is second-order-accurate and is based on a combination of
Adams–Bashforth and backward differentiation formula (AB/BDF) schemes, chosen for its
good stability properties [25]. The resulting scheme AB/BDF is semi-implicit, and for Equation
(1), it writes as:

3Vn+1−4Vn+Vn−1

2Dt
+2N(Vn)−N(Vn−1)= −9pn+1+

1
Re

DVn+1+Fn+1. (6)

It belongs to the stiffly stable schemes family [26] also used in Karniadakis et al. [21]. Then,
at each time step, the problem reduces to the resolution of Helmholtz and Poisson equations.

For the initial step, we have taken V−1=V0.
On Chebyshev collocation points, these Helmholtz and Poisson equations are solved

efficiently by using a complete diagonalization of operators in both directions [27,28], as all
eigenvalues are real and negative [1,2]. The computation of eigenvalues, eigenvectors and the
inversion of the corresponding matrices are done once in a preprocessing step before starting
the time integration. Thus, at each time iteration, the solution is obtained from simple matrices
products.

3.3. The impro6ed projection scheme (IPS)

The improved projection scheme corresponds to a modified version of the one proposed by
Goda [16], and implemented by Gresho [17] (‘Projection 2’) to finite element methods.

In the version (hereafter referred to as PSG) reported by these authors, the first step
implicitly solves a predicted velocity from the momentum equation, taking into account the
pressure gradient obtained from previous time level. This leads to a fixed normal pressure
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gradient during the time integration, held at its initial value (see Reference [17]). The purpose
of the present projection scheme is to solve this drawback, by introducing a preliminary
pressure at each time step, which allows a variation in time of the normal pressure gradient at
boundaries. This predictor also maintains the order accuracy of the temporal scheme used for
the global solution. Moreover, it will be shown later that this pressure step improves the
prediction of the velocity slip.

The fractional steps proceed as follows.

(i) The predictor for the pressure: before each time iteration, solve for the preliminary
pressure p̄ n+1 from Navier–Stokes and continuity equations:

Dp̄ n+1=9 · [−2N(Vn)+N(Vn−1)+Fn+1] in V, (7)

with

(p̄ n+1

(n
=n ·

!−3Wn+1+4Vn−Vn−1

2Dt
−2N(Vn)+N(Vn−1)

+
1

Re
[2L(Vn)−L(Vn−1)]+Fn+1" on (V. (8)

(ii) Solve implicitly for a predictor V* for the velocity from the momentum equation,
including this pressure field:

3V*−4Vn+Vn−1

2Dt
+2N(Vn)−N(Vn−1)= −9p̄ n+1+

1
Re

DV*+Fn+1 in V, (9)

with the actual boundary conditions

V*=Wn+1 on (V. (10)

(iii) The correction step consists of the explicit evaluation of the final divergence-free velocity
field:

3Vn+1−3V*
2Dt

= −9(pn+1− p̄ n+1) in V( =V (V, (11)

and

9 ·Vn+1=0 in V, (12)

with n ·Vn+1=n ·Wn+1=n ·V* on (V.

The latter step is solved through an intermediate variable f, defined as f=2Dt/3(pn+1−
p̄ n+1). Taking the divergence of Equation (11) with (12) yields a Poisson equation for f :

Df=9 ·V* in V, (13)

with the consistent Neumann boundary condition (see References [13] and [17]):

(f

(n
=0 on (V. (14)

Finally, update the corrected pressure and velocity fields in V( =V@(V:

pn+1= p̄ n+1+
3

2Dt
f,
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Vn+1=V*−9f.

3.3.1. Remarks. In the PSG version, the prediction step for the pressure is carried out once
at the start of the problem to provide an appropriate pressure field, and thus p̄ n+1 is to be
replaced by pn in the different fractional steps. For the present scheme, it is clearly shown from
Equation (14) and the definition of the variable f, that the normal pressure gradient at
boundaries is allowed to vary during time integration:

(f

(n
=0[

(p̄ n+1

(n
=
(pn+1

(n
"
(pn

(n
on (V,

while in the PSG:

(f

(n
=0[

(pn+1

(n
=
(pn

(n
= ···=

(p0

(n
,

on (V at each time step, as in this case:

f=
2Dt

3
(pn+1−pn).

V slips on (V, since boundary conditions on the normal component only are enforced to have
a well-posed problem. Gresho [17] has shown that for the PSG method:

t · (V−W)= −t ·9f= −
2Dt2

3
(p;
(t

+O(Dt3), (15)

with the simple approximation p; = [pn+1−pn]/Dt. In a similar way, for the IPS method, we
have:

t · (V−W)= −t ·9f= −
2Dt2

3
�(P:
(t

�
+O(Dt3),

where P: = (pn+1− p̄ n+1)/Dt.
In the boundary conditions imposed for the pressure field p̄, a second-order Adams–Bash-

forth scheme is used for the diffusion term L(V) expressed in the form proposed by
Karniadakis et al. [21] (see also Reference [7]), to improve the stability of the solution:

L(V)= −9× (9×V).

The present scheme differs from the one proposed by Timmermans et al. [14] by the treatment
of this predictor for the pressure and also on the definition of the intermediate variable f.
They have introduced a predictor for the pressure with an O(Dt) while using a temporal
scheme of O(Dt2).

4. RESULTS

Three test problems consisting of the resolution of time-dependent Navier–Stokes equations
have been considered to assess the effectiveness of the new algorithm (IPS). The first case will
serve to show the temporal behavior of the IPS method in comparison with the former PSG
method on the computed solution. Then the IPS method will be applied to the two following
test problems, and results will be compared with available solutions in the literature.
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Firstly, exact solutions are constructed from the Navier–Stokes equations by introducing
analytical source terms F.

Secondly, steady and unsteady flows inside the regularized square driven cavity are consid-
ered. The results are validated by comparisons with available numerical solutions also obtained
with spectral Chebyshev approximations but using different approaches: in primitive variables
formulation with other time-splitting methods (Shen [22] and Botella [23]) and in vorticity-
streamfunction formulation with an influence matrix technique (Ehrenstein [29], Ehrenstein
and Peyret [30]).

Finally, the axisymmetric Ekman layer flow regimes developing inside rotating cavities
submitted to radial throughflow are treated. The results are compared with available theoret-
ical [32], experimental [33] and numerical [34] solutions. The latter have been obtained with a
pseudospectral collocation-Chebyshev method, associated with the same time scheme used
here, under vorticity-streamfunction formulation and using an influence matrix technique [35].

4.1. Analytical time-dependent NSE solutions

The two algorithms are both implemented to the aforementioned pseudospectral collocation-
Chebyshev approximation with the second-order time scheme AB/BDF. Exact solution of the
Navier–Stokes equations (1) and (2) is built from analytical source term:

F=Ã
Ã

Ã

Á

Ä

−
1

Re
�

bRe sin(bt)−
p2

2
cos(bt)

n
sin

�px
2
�

cos
�py

2
�

+a cos(bt)

1
Re

�
bRe sin(bt)−

p2

2
cos(bt)

n
cos

�px
2
�

sin
�py

2
�

+a cos(bt)
Ã
Ã

Ã

Â

Å

where a and b are two constants.
The exact solution corresponds to:

V(x, y, t)=Ã
Ã

Ã

Á

Ä

cos(bt) sin
�px

2
�

cos
�py

2
�

−cos(bt) cos
�px

2
�

sin
�py

2
�ÃÃÃ
Â

Å

and

p(x, y, t)=cos2(bt)[cos(px)+cos(py)]/4+ (x+y)a cos(bt).

Thus, a value a"0 generates variations in time of the normal pressure gradient at
boundaries.

For the present test, the following set of parameter values were considered: Re=100, b=5
for two values of a : 0 (constant pressure gradient at boundaries) and 10, respectively. The
spatial resolution is fixed at N=M=32, and N=M=40 in some cases to test the spatial
accuracy of the solution.

To measure the temporal accuracy of both methods, the following norm has been
considered:

Etot(f)=max
t

! 1
NM

%
N

i=0

%
M

j=0

[f(xi, yj, t)− fNM(xi, yj, t)]2
"1/2

,
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where Eint( f ) and Ebou( f ) correspond to the restriction of Etot( f ) at the interior domain and
at boundaries respectively, and f(x, y, t) represents the exact solution. These errors are
reported for the velocity component u and for the pressure p during eight periods, t� [4p/5, 4p ],
when the periodic state is well established. Ebou(u) provides an evaluation of the velocity slip.

4.1.1. Time-splitting errors. From their definition, the two projection schemes PSG and IPS
satisfy exactly the incompressibility constraint inside the interior domain V at each time
iteration, irrespective of the time step, the spatial resolution and the flow characteristics.
Therefore, the numerical divergence boundary layer mentioned by Orszag et al. [20] was not
observed during our simulation.

To give an insight on the slip, the values of Ebou(u) are reported in Figure 1. Irrespective of
the value of a considered, the IPS method exhibits a temporal behavior of O(Dt3), which
indicates that ((P: /(t)�O(Dt) at least. For the former PSG method, a variation of Ebou(u) in
O(Dt2) is observed, in accordance with Equation (15). Moreover, it is shown that the new
algorithm improves the prediction of the slip with an order of magnitude varying from three
for the highest time step (close to numerical stability limit) to four at the lowest time step. The
saturation solution obtained with the time step Dt=5×10−4 shows the spatial accuracy limit
for N=M=32. Indeed, with a higher resolution N=M=40, the solution follows again the
O(Dt3) behavior.

Figure 1. Plot of L2-error of the velocity slip Ebou(u) versus time step Dt for the two projection schemes PSG and IPS.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 501–521 (1998)
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Figure 2. Plot of L2-error Eint(u) of the velocity component u inside the interior domain versus time step Dt for the
two projection schemes PSG and IPS. Effects of the variation of the normal pressure gradient at boundaries: a=0 and

10.

4.1.2. Temporal accuracy. When there is no pressure gradient variations in time at the
boundaries, a=0, both methods exhibit the same expected temporal behavior in O(Dt2) for
the velocity and for the pressure inside the whole domain (Figures 2 and 3). For the error on
the pressure at boundaries, it is noted that it follows the same behavior as the error obtained
at the interior domain Eint(p), indicating the important role of pressure boundary conditions
on the solution.

When the normal pressure gradient at boundaries is enforced to vary in time, a=10,
different behaviors are observed. First, the IPS method (denoted IPSa=10 in the figures)
exhibits the expected O(Dt2) behavior for the velocity (Figure 2) and for the pressure (Figure
3). The PSG method, however, presents a saturation of total errors for the two variables,
because of the inappropriate treatment of the pressure gradient at boundaries. This is reflected
by the variation of the pressure at boundaries (Figure 3). Some computations have been
carried out by filtering (setting to 0) the two highest modes in each direction for the pressure,
say p̂nm=0 for n=N, N−1 and m=M, M−1 from Equation (5). Thus, an improvement of
the solution is obtained, denoted PSGF

a=10 in Figure 3, but with an O(Dt). As these highest
modes carry the information on the boundary conditions, setting them to 0 has ‘removed’ the
inadequate conditions on the method. The initial pressure field is obtained for the PSG method
from the resolution of Equation (7) with (8), in which the initial velocity field corresponds to
the exact solution at t=0.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 501–521 (1998)
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From these results, some first conclusions are drawn:

� From their definition, the two projection schemes do not exhibit any numerical boundary
layer divergence induced by splitting errors.

� The PSG method provides the correct behavior when the solution does not present any time
variation of the pressure gradient at boundaries, and otherwise shows a saturation of the
solution. In this case, filtering of the two highest spectral coefficients of the pressure in the
two directions brings an improvement of the solution, but with an O(Dt) accuracy,
comparatively to the order of the temporal scheme used O(Dt2). This suggests that the
observed saturation may result from a ‘bad’ resolution of these modes, coming from the
inadequate boundary conditions of the pressure. However, the reason for the loss of
accuracy is not yet clearly understood.

� The predictor for the pressure introduced in the new algorithm IPS brings a solution to
these drawbacks mentioned for the former PSG method. This results from a better
prediction of the pressure field, consistent with a divergence-free velocity. Moreover, the
velocity slip at boundaries is reduced by one order of magnitude compared with the
temporal accuracy of the velocity, and comparatively to the former method PSG. The
solutions are also independent of the pressure gradient variations at boundaries during time
integration.

Figure 3. Plot of L2-error Eint(p) and Ebou(p) of the pressure p versus time step Dt for the two projection schemes PSG
and IPS. Effects of the variation of the normal pressure gradient at boundaries: a=0 and 10. Variables between I

correspond to values at boundaries Ebou(p).
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Table I. Computational costs in CRAY-c98 CPU seconds and memory re-
quirements in 64-bit words for the resolution of the Navier–Stokes equations

Preprocessing Poisson solver One iterationN=M Memory

1.68522E-02 1.39512E-04 2.52829E-03 34321416
2.38183E-02 2.0397E-0420 3.33118E-03 355742
3.272E-02 2.8534E-04 4.359E-0324 370958
5.4558E-02 5.11317E-0432 6.5469E-03 409582
8.15224E-02 8.6683E-0440 9.77865E-03 459022
0.115259 1.34985E-0348 1.3381E-02 519374

4.1.3. Computational details. The computational costs in CRAY c-98 CPU seconds are given
for different resolutions in Table I, for the preprocessing step, the resolution of a Poisson
equation and one iteration for the IPS method. The preprocessing step corresponds to the
computation of the different coefficients used for fast Fourier transforms and derivatives, the
eigenvalues, the eingenvectors and the inversion of matrices for the Helmholtz and Poisson
equations. As mentioned before, the solution is obtained (during the time iteration) from the
products of simple matrices after a complete diagonalization of operators in both directions.
One iteration includes the resolution of two Helmholtz (u and 6) and two Poisson equations
(p̄ and f), with the correction step. We recall that the boundary conditions for the predictor
of pressure (Equation (8)) must be calculated at each time step, contrary to the other variables.
The resolution of the preliminary pressure field p̄ does not bring excessive cost, particularly
due to the efficient solver used for the Poisson equation. A variation of the CPU time for one
iteration in function of the resolution is found to be 5×10−6N2, which is reasonably good.
The memory requirements for different spatial resolutions are also reported in Table I. It
follows a variation in O(N2).

The new method IPS is now applied to the computations of steady and unsteady flows in the
regularized driven cavity and the rotating cavity submitted to radial throughflow.

4.2. The regularized dri6en ca6ity

The second problem corresponds to the regularized driven cavity, studied by Ehrenstein [29]
(see also Reference [30]). The lateral and bottom walls are kept stationary, while the top lid
moves with a horizontal velocity component u(x, 1)= − (1−x2)2 and 6(x, 1)=0 for
(x, y)� [−1, 1]2. Shen [22] and Batoul et al. [24] have studied the same configuration ,but with
the upper wall moving in opposite direction.

4.2.1. Numerical stability. The critical time steps for different spatial resolutions are
presented in Table II for two values of Re=100 and 400, to allow comparisons with available
data in the literature. The good behavior of the method, which for instance at Re=400 follows
a variation in O(1/N) as already mentioned in Reference [30] (Table IV) is observed. These
authors have used the same temporal scheme associated with the Chebyshev collocation
method, as in this paper, but with a vorticity-stream function formulation (thus reducing the
number of equations to two, instead of four solved here). The present values are also similar
to the results obtained by Botella [23] with his Chebyshev projection scheme using a
third-order accuracy in time. Thus, the present algorithm does not bring severe restrictions to
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Table II. Values of critical time step Dtc for Re=100 and 400 (with an
error95×10−4).

Re=100N=M Re=400

0.09016 0.055
0.081 0.04120
0.07324 0.033
0.06132 0.027

the stability properties of the temporal scheme, as its order of accuracy is kept for the pressure
and the velocity.

4.2.2. Steady flows. Comparisons of some characteristic flow variables are made with
previous numerical results obtained by Ehrenstein [29] (Table III) and reported in Reference
[30] (Table V) for two values of the Reynolds number, Re=100 and 400.

The comparisons are carried out for different spatial resolutions on the extremum values of
the streamfunction c with its location (corresponding to the primary vortex) and of the
vorticity z at the moving top lid (x, 1):

M1=max �c � at collocation points;
M2=max �z � at collocation points; and
M3=max �z � from solution interpolated on 201×201 uniform grids.

The present results are reported in Tables III and IV.
These comparisons show a good overall agreement, especially on the prediction of the

different locations. The present results follow the same behavior of the solution when varying
the spatial resolutions. The interpolation to a 201×201 equidistant mesh provides a good
indication of the solution, as the mesh size is close to the distance between the boundary and
the nearest collocation point for the largest resolution considered, N=M=32 (it corresponds
to the smallest mesh size for the collocation grids). For the lowest value of Re (Table III), our
results agree very well with the solutions obtained by Ehrenstein [29] and also reported in
Ehrenstein and Peyret [30] for spatial resolutions N=M\16 on the maximum value of the
streamfunction, and for N=M\20 on the maximum value of the vorticity at the moving lid.
For Re=400 (Table IV), small discrepancies are observed, particularly on the maximum
values of the vorticity at the upper moving wall. Nevertheless, the largest difference for the

Table III. Effect of the resolution on characteristic flow variables M1, M2, M3,
for the regularized driven cavity: Re=100

M3N=M M3
E M3

BM1 M2

13.447613.466313.461913.36048.3158E-0216
(0.62)(0.60)(0.40, 0.78) (0.62) (0.62)
13.4463 13.4459 13.444120 8.2695E-02 13.1774

(0.42, 0.73) (0.65) (0.62) (0.62) (0.62)
24 8.3315E-02 13.4226 13.4447 13.4446 13.4446

(0.37, 075) (0.62)(0.62)(0.62)(0.63)
8.3402E-02 13.342232 13.4447 13.4447 13.4448

(0.62)(0.60)(0.40, 0.74) (0.62)(0.62)

Comparison of values of M3 with results obtained in [29,30] (M3
E) and in [23] (M3

B).
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Table IV. Effect of the resolution on characteristic flow variables M1, M2, M3

for the regularized driven cavity: Re=400

M1 M2N=M M3 M3
E M3

B

8.5979E-02 25.0387 25.385416 25.4675 25.1604
(0.40, 0.60) (0.60) (0.62) (0.62) (0.625)
8.5185E-02 24.6404 24.945820 24.9846 24.9273
(0.42, 0.58) (0.65) (0.62) (0.63) (0.63)
8.5718E-02 24.9180 24.917024 24.9333 24.9148
(0.43, 0.63) (0.63) (0.63) (0.63) (0.63)
8.5481E-02 24.7844 24.910732 24.9110 24.9111
(0.40, 0.60) (0.65) (0.63) (0.63) (0.63)

40 24.9109
(0.63)

Comparison of values of M3 with results obtained in [29,30] (M3
E) and in [23] (M3

B).

highest mesh (N=M=32) remains B0.02% for all values compared. Comparisons with
recent numerical results obtained by Botella [23] with a O(Dt3) time accurate scheme confirm
also the good behavior of the present method (see Tables III and IV).

Streamlines with corresponding isobaric lines are displayed in Figure 4 for Re=400
obtained with a resolution of N=M=32. The flow structure is well represented with
secondary vortices, compared with available solutions in the literature. There is also good
behavior of the isobaric lines structure compared with the isobaric contours reported by
Morchoisne [31] for smaller value of Re, Re=200.

4.2.3. Unsteady flows. Comparisons are carried out with the results obtained by Shen [22] for
non-stationary solutions. He obtained steady state solution at value of Re510000. He argued
that the effective Reynolds number for the regularized driven cavity should be less than that
for the driven cavity (where a constant value of one is imposed everywhere along the upper
boundary). He found that the Hopf bifurcation does occur for the range of Re belonging to
[10000, 10500]. More recently, Batoul et al. [24], applying their ‘projection-diffusion’ algorithm
with pseudospectral Chebyshev methods, gave more precise range for the critical
Re� [10250, 10300]. Since our purpose is not to compute the exact threshold of the unsteady

Figure 4. Streamlines and isobaric lines for the regularized driven cavity: steady flow at Re=400, N×M=32×32.
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Figure 5. Convergence histories of the total kinetic energy E(t) for the regularized driven cavity: unsteady flow at
Re=10500, Dt=0.005, N×M=48×48.

flows, comparisons have been carried out for Re=10500, where the oscillatory motion of the
flow is well established. The spatial resolution corresponds to the same one used by Shen,
N×M=48×48, with a time step Dt=0.005.

The total kinetic energy E(t):

E(t)=
! %

N

i=0

%
M

j=0

[u(xi, yj, t)2+6(xi, yj, t)2]
"1/2

has been used for quantitative comparisons, as well as the value of the time period. The
convergence histories of E(t), t=nDt, are presented in Figure 5. Starting from steady state
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solution obtained at Re=10000, the solution reaches its asymptotic periodic state at about
t=1500, while Shen has observed it at about t=4500. However, we note a good agreement
on the final amplitude of oscillations and on the extremum values: the maximum value is
E(t)max=0.375663 and E(t)min=0.375426 is the minimum value, while for Shen, these values
are 0.37548 and 0.37525, respectively. The corresponding power spectrum analysis for the
present solution is displayed in Figure 6, which shows clearly the monoperiodic nature of the
flow with a frequency f=1/T=0.328, from about 160 complete cycles after the asymptotic
state is fully established (see Figure 5, for t� [1500, 2000]). Shen has reported T=12.12
(probably 4T), while in this paper, it corresponds to T=3.04875. Recently, Batoul et al. [24]
have obtained a value of T=3.03 for Re=10300, which confirms the correctness of our result.

We have displayed a series of seven instantaneous iso-streamfunction contours for one
complete cycle (Figure 7). All the features shown by Shen are well represented. As observed by
Shen, persistent oscillations develop at secondary and tertiary vortices, particularly the
appearance and the disappearance of the two tertiary vortices at the bottom and top right side.

4.3. The rotating ca6ity with superimposed radial throughflow

The configuration corresponds to a rotating annulus, where the flow enters radially at the
inner radius, a, and exits the outer radius, b, between two co-rotating discs distant of s. The
validation is carried out by comparisons of the computed results with theoretical solutions of
Hide [32], experimental data of Owen and Pincombe [33] and numerical results of Maubert et
al. [34]. Equivalent Dirichlet boundary conditions to those used in Maubert et al. are imposed
at the entrance and the exit for the velocity.

Figure 6. Power spectrum analysis of the total kinetic energy E(t) for the regularized driven cavity: unsteady flow at
Re=10500, Dt=0.005, N×M=48×48.
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Figure 7. Temporal evolution of instantaneous iso-streamfunction contours for the regularized driven cavity: unsteady
flow at Re=10500, Dt=0.005, N×M=48×48.

The geometry of the cavity is defined by an aspect ratio A= (b−a)/s=3.37 and a curvature
parameter Rc= (b+a)/(b−a)=1.22, corresponding to the one studied experimentally by
Owen and Pincombe [33]. Maubert et al. found a steady state solution at the value of the
rotational Reynolds number Ref=vb2/n=25000 for values of the dimensionless mass flow
rate Cw=Q/nb5100. For higher values of Cw, the flow evolves into a chaotic temporal
behavior through several bifurcations (see also Reference [36]). In the present study, steady
state solution at Cw=100 and Ref=25000, corresponding to ‘non-linear’ Ekman layer flow
regime, is reported. Computations have been achieved with the same spatial resolution used in
Maubert et al., N×M=40×40.

The flow structure is displayed in Figure 8. All the features mentioned in the literature for
the set of parameters values considered are well represented by the solution. The four distinct
regions described by Hide [32], observed experimentally by Owen and Pincombe [33] and
obtained numerically by Maubert et al. [34] are shown: the source (inlet) region, the separate
Ekman layers along the rotating discs, the sink (outlet) region and the inviscid core. The flow
exhibits a symmetry with respect to the midhorizontal plane. The radial length of the inlet
region is larger than that of the outlet region, which is characteristic of non-linear regime.
Indeed, Hide has mentioned the importance of the inertial terms in these regions.

Comparisons have been carried out for the radial length of the inner layer and for the axial
variations of the radial and azimuthal velocity components. The radial length is computed as
being the distance from the entrance to the location where the source region moves into the

Figure 8. Streamlines for the rotating cavity with superimposed radial throughflow: Ref=25000, Cv=100, A=3.37,
Rc=1.22, N×M=40×40.
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Figure 9. Axial variations of (a) the radial velocity component u/vb and (b) the azimuthal velocity component 6/vb
at midradial section for the rotating cavity. Comparison with available solutions for Ref=25000, Cv=100, A=3.37,

Rc=1.22, N×M=40×40.

Ekman layers. From the streamlines displayed in Figure 8, we obtained DE/a=2.374. The
theoretical estimate of Hide gives DE/a=2.3747 with his linear analysis, while the empirical
correlation found by Owen and Pincombe gives DE/a=2.375. There is good qualitative
agreement between the computed solution and the theoretical and experimental values. This
confirms the correctness of the representation of the flow structure obtained with the present
method.

The velocity profiles u and 6 are displayed at the midradial section of the cavity, r=0, and
for half height z� [−1, 0], because of the symmetry of the flow (see Figure 8). Comparisons
with the classical Ekman layer (linear) and an extension to non-linear flow regimes [37]
solutions and with numerical profiles obtained by Maubert et al. are reported in Figure 9. For
the axial variation of the radial velocity component, the two computed and the theoretical
solutions exhibit the same characteristic behavior, with a weak reverse flow between the
Ekman layer and the core region (Figure 9(a)), which is also visible on the flow structure
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Table V. Comparison of the geostrophic velocity at midradial section of the rotating
cavity: Ref=25 000, Cv=100, A=3.37, Rc=1.22, N×M=40×40.

Non-linear theory [37] Reference [36] Present resultLinear theory [32]

−0.1943 −0.19733 −0.19736−0.18317

reported above. The two computed profiles obtained with different approaches (coupled versus
time splitting method) using both pseudospectral approximation are identical. For the axial
profile of the azimuthal velocity, a good agreement is also obtained for all the solutions
(Figure 9(b)). The geostrophic solution proposed by Faller [37], including non-linear effects, is
closer to the computed ones, indicating the importance of inertial terms. The respective values
of the geostrophic velocity are reported in Table V.

5. CONCLUSION

An improved projection scheme is presented and applied to spectral methods associated with
a second-order multistep time scheme, for the resolution of the incompressible Navier–Stokes
equations. The major goal of the method is to allow the treatment of problems involving time
variations of the pressure gradient at boundaries. This is done by introducing a correct
predictor for the pressure at each time step, derived directly from the Navier–Stokes
equations, in the former algorithm proposed by Goda [16] and Gresho [17]. Moreover, it is
shown that the present algorithm reduces the velocity slip, compared with the previous one.
This easy-to-implement method does not exhibit any numerical divergence boundary layer, as
the incompressibility constraint is satisfied exactly inside the interior domain. Also, it does not
require the use of staggered grids. It has also been found that the numerical stability constraint
is not very restrictive, and computational costs as well as memory requirements remain inside
a reasonable range. Very good agreement is obtained from comparison of the results with
available solutions, for the prediction of different flow regimes (steady and unsteady) in the
regularized driven cavity configuration and of the non-linear Ekman flow regime in the
rotating cavity submitted to radial throughflow. The Ekman boundary layers structure
accompanied by the presence of a fine recirculation layer, observed in experiments and
described by theory, is a severe test problem to validate the present pseudospectral method. An
extension of the code to the study of the fully three-dimensional regimes is in progress for the
latter application.
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